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In all models of a solid body that are considered in continuum mechanics
(elastic body, 1deal plastic body, etc.), 1t is only in the very simple case
of a homogeneous and isotroplc body that the most detalled analysis is under-
taken. Actual solid bodies that can be assumed homogeneous and isotropic
with respect to their macroscopic properties have in the majority of cases
an inhomogeneous microscoplc structure, the characteristic dimension of which
greatly exceeds the molecular one. A typical example 1is provided by poly-
cristals, in which the size of indivldual grains 1is of the order of 10°% to
10~'em, This size 1s small in comparison with the usual size of objects
made of polycryvstals; however, 1t exceeds the characteristic molecular scale
by several powers of ten. Polymers, as was recently proved by V.A. Kargin
and T. I. Sogolova, also have an inhomogeneous structure of super-molecular
dimensions,

The parameters of the individual micro-inhomogenietles (geometric charac-
teristics, elastic properties, structure, etc.) can be treatel as random
quantities, Therefore, the characteristics of the state of stress in such
bodies (stresses, and others) are random functions of time and position in
the body. For the descriptlon of the stress-deformation state of bodies
with an arbitrary deviaticn from linear elasticity, it is not only the mean
values — the mathematlcal expectatlons — of the considered quantities that
are of significance, but also thelr correlation functions. In fact, for
cases that can be treated with the ald of the linear equations of the usual
theory of elasticity, it follows by virtue of the linearity of these equa-
tions that the correlations drop out of the avereged equations. Therefore,
it is possible to obtain a closed system of linear equations for the aver-
aged quantities and to study independently the linear system of equations
for the correlation function, 1f they are of interest on their own. For
nonlinear processes, 1in particular plastic flow, this does nnt 1n general
apply. The equations for the averaged values contain correlation moments
which represent an essentlal element of the macroscopilc investigation.

There 1s an analogy between plastic flow and turbulance in a viscous fluild,
which has been pointed out, in lucid form by Taylor [1]. This analogy follows
from both the nonlinear character of these phenomena and also from their
dissipative properties. The nonlinearity leads to a redistribution of energy
among the various degrees of freedom of motion, and the dissipacvion of energy
on a small scale eliminates the possibility of its accumulation. A definite
advance in the theory of turbulence has been achieved by means of statisti-
cal methods, and the clearest results can be obtalned for the simplest par-
ticular case of homogeneous, isotropic turbulence. Apart from a certailn
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very particular form of flow, the turbulent field is not so simple. Never-
theless, as was first established by Kolmogorov [2 and 4], for stationary
turbulent flow the assumption of isotropy and of homogenelty results in
motions of sufficiently small scale which are independent of the structure
of the established field (local homogenelty and local isotropy of a station-
ary turbulent flow). This property, together with the hypothesis of trans-
mission of energy by a cascade of motions of different scales, enabled
Kolmogorov to describe turbulent motions of appropriate scale factors. The
above-mentloed analogy makes it possible to carry out the corresponding
examinatlion in the theory of steady-state plastic flow also.

1, Statistical ocharaoter of & field of miorostresses. Pysical solids
have an inhomogeneous microstructure of supermclecular dimensions. For ex-
ample, polycrystalline materials consist of an aggregate of crystals of dif-
ferent shapes, sizes, orientations, boundary states, etc. Essentlally, we
have the same picture for mountain rocks and polymers. It 1s natural that
geometrically identical samples made up from varilous pieces of a macro-homo-
geneous material are not ldenticsl microscopically, and that the stresses
produced in these samples under the action of one and the same loading will
also be different. For a physical body, even the representation of the com-
plete structure of the inhomogenelty presents insurmountable difficultiles,
not to mention the mathematical difficulties of calculating the states of
stress and strain in a body consisting of a large number of crystals. How-
ever, the random character of the micro-inhomogeneities make 1t possible to
apply statistical methods of macroscopic description. Thus, statistical
methods have been used in the paper of Lifshits and Rozentsvelg [5] to give
a discription of the elastic propertles of polycrystals.

Correspondingly, we will regard the totallty of geometrically identlcal
samples taken from different parts of a macro-homogeneous and isotropic
material as a statistical ensemble. The average over the ensemble of the
value of all kinds of characteristics (the mathematical expectation)* will
be denoted by the symbol <), and hence the stress o,,(x) at a given point
X of the sample can be representd in the form

o (x) = o5 (X)) + 04 (X) (1.1)

where c,,(x) 1s the pulsation of the stress or the microstress**. The micro-
stresses represent a random tensor fleld with mean values equal to zero. The
basic characteristic of thils fleld is the correzlation tensor of fourth order

Rijg (x,x + 1) = {o;" (Xow (x4 1)) (1.2)

which characterizes the connection of the stresses at different points. The
scale factor of distances at which the values of the components of the cor-
relation tensor become negligibly small compared with thelr values when r=20

* In view of the ergodic hypothesis, the average over the ensemble can be
replaced by elther a spatial or temporal mean.

*%x This terminology 1is a little different from the conventlonal.
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will be called the scale factor of the microstress correlation.
Because of the symmetry of tensor ¢, and definition (1.2), we have
Riju = Ry = Ry, Rijey (x, x4+ 1) = Ryyyj (X, x — 1) (1.3)
The fleld of stresses satlsfies the equilibrium equations
06, (X 4- 1) . 95, (x -+ 1)

_ — =0 (1.4)
d:z:a_ Bra
Averaging (1.4) and subtracting the averaged equation from (1.4), we
obtain 6<dak(x» asa}(x)
6x1 ’ axd

Multiplying the second equation {1.4) by e, ’(X) and averaging, we obtalin
an equatlion for the correlation tensor
6Rijka (x,x+4r) _0 (1.6)
or,
We note that the first invarilants of the correlatlon tensor R#,,,, which
are obtalned by pairwlse contraction of the indices, have definite physical
meaning. In fact, isolating the spherical part of the stress tensor, we

have
oij = — pdi; + v (1.7)
Substituting this into (1.2) and contracting, we find

Reopap (X, x+1)=3P (X, X+ 1)+ T(x, x+1), Rospp (x.x+1) = 9P (x, x+71) (1.8)
where

P, = 0 (x+ 15 Txx+1 =ty (0T (x+ 1)

~7

The elastic energy per unit mass of a body with shear modulus u and
bulk modulus X can be expressed as
1 2 1 9 | ' }
= —1T T P'= = Y .

+ { 4:19 ta‘? + 2}fp p"Z} + { 2up (liag) T aB +K p>p } (19)

where the term #, in the flrst brackets is the sum of the elastic energy of
change of shape and of vqQlumetric dilatation for the averaged stresses, the
term in the second brackets is the analogous quantity for the microstresses,
and the third brackets contain terms expressing the interaction between the
averaged stresses and the microstresses (in a plastic body W 1s the energy
released as a result of complete unloading). From the expression for the
mean energy the last terms drop out, so that the mean energy of the micro-
stresses can be expressed in the form

(W'Y = —P (x x) + T (x, x) (1.10)
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Thus, Raqgp (X, X) and Bygap (X, X) can be expressed in the form of linear
combinations of the mean elastic energies of change of shape and of the
volumetric deformation for the microstresses.

As has already been pointed out, for sufficlently small stresses, when
all the deformations are reversible and the behavior of the bodies can be
described by the classical linear equation of the theory of elasticlty, the
determination of the tensor of the mean stresses and of the correlation ten-
sor can be carried out separately. Thils problem was treated by Volkov [6].
Any divergence from classical, linear elasticity leads to nonllnearity of
the basic relations, and the system of equations for the mean stresses ceases
to be closed. In particular, this occurs in plastic flow.

2. Homogeneous, isotroploc miorostresses. The simplest possible assump-
tion about the structure of the field of mlcrostresses 1s the assumption
that it is homogeneous and 1sotropic. This assumptlon implles, in particular,
the homogeneity and isotropy of the correlation tensor (1.2).

An isotropic fleld of microstresses can be produced, for example, by sub-
jecting a sphere to repeated, 1dentical extensions or compressions in differ-
ent random directions (by rolling it between rigid plane surfaces). The
general expression for the homogeneous, isotroplc tenscr that satisfies
relations {(1.3) has the form

R (r) = A (r) mimymyny + B (r) (nindyy + ngnydy;) + C (r) (nimidy +
+ by + nyndy + ngydi) +D () (0udy + 8485) + E (1) 8:;0  (2.4)

whererr = ]rL n (nﬁ =71/ ryand 4, B, C, D, E are scalar functions of r.
On substituting (2.1) into equation (1.6) we obtain the three independent

equations
24 +rA" — 2B 4+ 1B’ — 4C + 2rC" =0
2B+ rB" +2C + rE’ =0
B+3 4+ rC" 4 rD" =0 (2.2)

In place of the functions 4, B, C, D, F it 1s possible to consider
linear combinations of them which have direct physical meaning
L) =nnyRiyy = A + 2B+ 4C -+ 2D + L
fo (1) = ninjtyt Ry = B+ E,  f3 () = mm|Rijy = C -+ D (2.3)
fo(r) = wtmtiRiy =D, [0 = wylil Riju = E

9 9
2

m=r/r, ®=1"=1=1, nt =nt=1tr=20)

Equations (2.2) assume the form
Yo' = — fi + £+ 2fs
Yarfa' = — fo—fs+ fi + 5 (2.4)
rfs = — fy — 3f3 + 3/s + Is
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Corresponding to the functlons g ,..., fs, 1t 1s possible to introduce
integral scale factors for the correlations in the form

o]

- fi(r)ydr
L=\"5

0

(2.5)

Thus, by virtue of the equilibrium equations, only two correlation moments
remain independent.

In the following Iinvestigation it will sometimes be convenient to pass
over to Fourler transforms. A random fleld of microstresses can be resolved
into a Fourier-8Stileltjes integral

o’ () = | e¥=dzy; () (2.6)

Substituting this expression into the definition of the correlation tens
sor (1.2), we obtain n

Ry (xtr, x)= | efiersteion ¢az;; (k) dz (k) 2.7
(Here the bar indicates the complex conjugate quantity).

For the homogeneilty of the field (independence of X ) it is necessary
et (dZi; (k) dZ(K))> = Digyr (K) & (k — K') dPkdk’ (2.8)

1.e, that the spectral components of the flelds of microstresses should be
noncorrelative, Thus, for a homogeneous field we obtaln

R (1) = S Oija (k) ef*r dk (2.9)

The Fourler transform &,,,, of the correlation tensor can be defined as
the inverse of (2.9) so that

Dy (k) = LSRW (r) e-ikT @dr (2.10)

" 8a®
It satisfies the symmetry relatlons
Diju = Qjury; = Dijix, Diji (k) = Opuij (— k) = Qi (k) (2.11)
Moreover, the form @ = (Dijkl (k) Xin—Xlﬁ 1s positive-definite. for arbi-
trary complex vectors X, ¥ . Equations (1.6) can be written down in the
form k@i =0 (2.12)

Then the general expression of the isotropic spectral tensor &,,,, can
be written down in the form

Qi = a(k) xijnm + b (B + ) Oogy = k2ikk; — B28,5))  (2.13)
where a(x) and »(x) are functions of the magnitude of the wave vector.
The coefficients gq(%k) and »(k) can be expressed in terms of quantities

having direct physical meaning. For this we make use of the spectral rerre-
sentatlion introduced in Section 1 of the functions P and 7 in the case
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of a homogeneous, isotropic field of microstresses. We have
B .
P (r) = {1 (k) emr Pk = 4ng IT (k) k2 325 gy
¢ 0

T (r) = 4nS® (k) K2 S g (2.14)

The integration over the angle can be carried out separately by virtue of
the isotropy.

On the ground of (1.8), (2.9) and (2.13) we have
Dypop (k) = 3L (k) + © (k) = 2a (k) + 6b (k)
Dgops (k) = 9T (k) = 4a (k) + 4b (k) (2.15)

In agreement with (1.10) and (2.14), for a homogeneous, isotropic field
of microstresses we obtain

, _w!i ‘16n
<W>—§ : k)dk+§3 2o e (k) dk
E(K) = Vg2 O%), | e(k) =TI (K, (2.16)

so that Z(x) and e(k), to within an accuracy of a constant dimensional
multipiler, are the spectral densities of the energles of change of shape
and of volumetric dilatation, respectilvely.

Expressing g(k) and »(kx) directly in terms of g(k) and e(x) , we
can rewrite (2.13) in the form

Dy (k) = ‘E;(k)—he—(kl {murty + Mgy — Hite} + k) — = Kijxg  (2.17)
3, Looal properties of steady plastic flow, We will consider a body

which is in a macro-homogeneous, stress-deformation state and which is com-
posed of microscoplcally inhomogeneous material. We will assume that the
materlal, in regard to 1ts properties, approximates an 1deal plastic body
and, further, that the individual elements of the supermolecular structure
deform plastically in an almost isotropic manner. In particular, in appll-
cation to polycrystals this means that the crystallites have a large number
of slip planes.

We will follow the course of development of plastic deformations in abody
with increase of loading. For definiteness we will speak of polycrystals.
At the beginning, when the loading is sufficiently small, the material deforms
elastically. Then, on attaining a certain load, the most loaded and the
favorably orilentated crystallites undergo plastic deformations. If the micro-
inhomogeneities in the material are dlstributed sufficiently uniformly, the
mean distance ], between the first plastically deformed crystallites can
be very great, in particular, great in comparison with the mean dimensions
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of a crystallite. Thus, mlcrostresses arise* with the scale factor ],

With further increase of the load, plastic deformations arise in new crystal-
lites which are then located closer to one another so that there arises a
random distribution of microstresses with the scale factor J],< 7, . With
subsequent increase of the load, in the same way there arise mlcrostresses

of scale factor J4<1,<1,, and so forth, so that in steady plastic flow
there 1s an aggregate of microstresses with scale factors from ], down to
dimensions of the order of the mean grain size 4 and smaller.

For bodies that are almost ideally plastic, yielding occurs in a narrow
interval of load variations. That the scale factors of microstresses can
significantly exceed . the grein size has been verified experimentally (see the
very important work by Pashkov and Bratukhina | 7)). Under the conditions
of an inhomogeneous stress-deformation state, the upper scale factor of the
microstresses can be determlned by the scale factor of the inhomogeneitles.

For microstresses cf greatest scale factor ], we encounter anisotropy of
the fleld of applied loads, so that microstresses of this scale factor can-
not be considered as isotropic. In passing to the subsequent, smaller scale
factor 1., this anlsotropy becomes smaller, since on the anisotropy of the
microstresses of greatest scale factor, a new random element 1s superimposed.
In passing to microstresses of even smaller scale factors, further smooth-
ening of the anisotropy arises, so that it can be assumed that microstresses
having a scele factor very much smaller that 1, are isotropic. We empha-
slze that 1sotropy of the microstresses of smallest scale factors 1s assured
by the presence of a large number of slip surfaces on the individual crystal-
lites. The behavior of a material with a small number of slip systems will
be significantly affected by the texture that is formed during the defor-
mation process. Thils texture leads to anisotropic microstresses of small
scale factor.

The picture presented shows that in steady plastic flow the field of micro-
stresses with scale factor smaller than a certain 7 1s not only homogene-
ous and isotroplc but also has a definite autonomy, 1.e. an independence of
detalls of the structure of the basic state of stress and microstresses with
larger scale factors. In other words, in steady plastic flow the field of
microstresses possesses a local isotropic and homogeneous property. Thus,
for corresponding scale factors the structural tensors [2 to 4], which are
made up of the characteristics of the stress-deformation state for steady
plastic flow, must be 1sotropic and homogeneous. In particular, the tensor

Disi (x,x 4+ 1) = (loij (x) —045 (x+ 1) o (X) —om (x + l')]> (3.1)

* By characteristic scale factor we mean, as usual, the order of magnitude

of the distances over which the stresses change significantly.
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must be homogeneous and 1sotropic for r < 1 . Hence it follows that Formula
(2.1) 1s also valid for the structural tensor Dy4x1. For an explanation of
the connections between the coefficients 4, B, ¢, D, £ of the structural
tensor pD,,,, We note that, by virtue of the autonomy of the fileld of micro-
stresses with the scale factor smaller than ] , we can obtain these con-
nections by considering the particular case when there is complete isotropy
and homogeneity throughout the whole field of stresses. In this case

Dijry = 2 {635 (K)o (X)) — 2035 (X)om (X + 1)) =
= 2 {01j 01> — 2 {61ijOams) (3.2)

when the indices correspond to point 1 with position vector X and to point
2 with position vector X + r . By differentiating the last relation with

respect to the coordinates of point 2, we obtain
aD .. os,
THRL 9 s TR :
T 2 oy =0 (3.3)
since on account of the equilibrium equation J5,; / 0z, == (), By virtue of
the homogeneity, the last relation can be written out in the form
9D 5

G =0 (3.4)

(r, are the components of r ). In exact analogy to the preceding, we find
that the functions 4, B, ... are connected by the same three differential

relations (2.2), and consequently for a complete description of the tensor

Dyye1 it 1s sufficient to know two of these functions.

We will now consider the process of transforming the energy in the course
of steady plastic flow. The work of the external loads under conditions of
developed plastic flow 1s completely converted into the work of plastic de-
formations, and this conversion takes place with the plastic deformation of
the individual grains. Relylng on the above-gilven pattern of steady plastic
flow, the process of conversion of energy can be represented as the trans-
mission of energy from the macroscopic stresses to the microstresses of
greatest scale factor, and from these to the stresses of smaller scale factors
until there is no dissipation of energy at the expense of plastic deformation
of the grains, i.e. in the microstresses with a scale factor 1, smaller than
the mean dimension of the grain.

Similar to the inertial interval introduced by Kolmogorov in the theory
of turbulence, it is possible to make an assumption concerning the existence
of intervals of scale factors of the microstresses (elastic interval) in
which, on the on= hand, we have local isotropy and homogeneity and, on the
other hand, characteristic scale factors are sufficlently great in comparison
with the dimension 1, such that the microstresses of the ccnsidered inter-
val of scale factors are not assoclated with an appreciable dissipation of

energy.
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The relations characterizing the plastic flow can be expressed in form of
functions of kinematic quantities of the type like the "kinematic stress”
c,,/$ » of the energy absorbed by plastic strains in unit mass, etc., from
the dimension of which has been excluded the mass at the expense of division
by the corresponding power of density. In particular, the ccefficients 4,
B, ¢ D, E, which determine the kinematic structure tensor p,,,,, have under
such conditions the dimensions 747 4. In the elastlc interval all the kine-
matic characteristics of plastic flow can be determined by only two quanti-
tles: the distance r and the energy ¢ that can be absorbed in a unit
mass in unit time. From dimensional considerations we have

A =af(en” |B=B(n% [C=1(er)h
D = 0 (er)’s, E = M\ (er) 3.5)

For the microstresses of all scale factors r < 1 , the significant para-
meter will also be that scale factor 1, of the microstresses in which the
dissipation of energy occurs in the plastic deformation. Thils leads to
functions of the form A = g%r'f, (r/ l)), where f, 1s some dimensionless
function, and similarly for the other functions,.

Substituting (3.5) into (2.2), we obtain the following expressions for
the coefficlents y, A and § 1n terms of o and 8

h=2a—38, 8 =—"a-+ B, b= —2g¢—Ip  (3.6)

There 1s also interest in giving the spectral formulation of the adopted
hypotheses and the results obtalned. The first hypothesis consists in the
fact that the flelds of microstresses with wave numbers % > 1~' are homo-
geneous. Hence there 1s a lack of correlation of the microstresses in this
spectral band of wave numbers, 1.e. Formula (2.8). The second hypothesis —
the hypothesls of a cascade in the space of wave numbers — consists in the
fact that, in the interval x > ]1~!, the characteristics of the microstresses
can be determined by the followlng parameters: x(z7'), ¢(z27~®), and 1,(z).
Therefore, the kinematic densities of energy of change of shape and of volu-
metric dllatation can, by virtue of dimensional considerations, be written
in the form

E = ¢ sfi (kly), e = ehhofg (ki) (3.7)

The third hypotheslis means that in the interval x > 7-! there exists a
region of wave numbers x <« Iz'. In thls reglon klo< 1 , so that fE and
7, become constants and relations (3.7) can be written down in the form

E = Cpe'shs, e = (C, ek (3.8)
The fourth hypothesis consists in the fact that in the iaterval jx > 77!
we have isotropy of the flelds of microstresses. By virtue of these hypo-
theses and Formula (3.8) for the spectral representation &, ,¢1 of the cor-
relation tensor, a relation of the type (2.17) results
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Dijie = ek™5(Cp — Co) (ks + %y — %ijunr) + 6Coni; %] (3.9)

The dimensionless constants QE and Oe are connected by the constants ¢
and g 1introduced earlier.

Making use of the property of integral transform of the structural tensor
(3]

Dija = 28(135]-,,1 (k) (1 — cos kr) dr (3.10)
we obtaln

Com (0.28 — 3a) 102,  C, = (— 0.048 — 0.50) 10>  (3.11)

Thus, in the elastic interval of scale factors and of wave numbers it
turns out tobe easy to obtain the expression for the structural tensor of the
field of mlcrostresses and of the spectral representation of the correlation
tensor to within an accuracy of two universal constants.

The results obtained once more clearly demonstrate that the idea of local
isotropy and homogeneity, as well as the cascade hypothesis introduced by
Kolmogorov in the theory of turbulence, have & very general meaning for a wide
class of nonlinear distributed (continuous) systems with dissipation.

The authors sincerely thank A.S. Monin for valuable advice and R.L. Sal-
ganik for helpful discussion.
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