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In all models of a solid body that are considered In continuum mechanics 
(elastic body, Ideal plastic body, etc.), It Is only In the very simple cs.;e 
of a homogeneous and Isotropic body that the most detailed analysis is under- 
taken. Actual solid bodies that can be assumed homogeneous and Isotropic 
with respect to their macroscopic properties have In the majority of cases 
an Inhomogeneous microscopic structure, the characteristic dlmenslon ofwhlch 
greatly exceeds the molecular one. A typical example Is provided by poly- 
crlstals, 
10-lcm. 

In which the size of Individual grains Is of the order of 10e5 to 
This size Is small In comparison with the usual size of objects 

made of oolvcrvstals; however. It exceeds the characteristic molecular scale 
by several powers of-ten. Polymers, as was recently proved by V.A. Kargin 
and T. I. Sogolova, also have an Inhomogeneous structure of super-molecular 
dimensions. 

The parameters of the Individual micro-lnhomogenletles (geometric charac- 
teristics, elastic properties, structure, etc.) can be treated as random 
quantities. Therefore, the characteristics of the state of stress in such 
bodies (stresses, and others) are random functions of time and position in 
the body. For the description of the stress-deformation state of bodies 
with an arbitrary devlatlcn from linear elastlcltv. It Is not onlv the mean 
values - the mathematical expectations - of the considered quantliles that 
are of significance, but also their correlation functions. In fact, for 
cases that can be treated with the aid of the linear equations of the usual 
theory of elasticity, It follows by virtue of the linearity of these equa- 
tions that the correlations drop out of the avereged equations. Therefore, 
It Is possible to obtain a closed system of linear equations for the aver- 
aged quantities and to study Independently the linear system of equations 
for the correlation function, If they are of Interest on their own. For 
nonlinear processes, In particular plastic flow, this does nqt In general 
apply. The equations for the averaged values contain correlation moments 
which represent an essential element of the macroscopic Investigation. 

There Is an analogy between plastic flow and turbulance In a viscousfluid, 
which has been pointed out, In lucid form by Taylor Cl]. This analogy follows 
from both the nonlinear character of these phenomena and also from their 
dissipative properties. The nonlinearity leads to a redistribution of energy 
among the various degrees of freedom of motion, and the dissipation of energy 
on a small scale eliminates the possibility of Its accumulation. A definite 
advance In the theory of turbulence has been achieved by means of statistl- 
cal methods, and the clearest results can be obtained for the simplest par- 
ticular case of homogeneous, Isotropic turbulence. Apart from a certain 
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W$3;e;~tlcular form of flow, the turbulent field Is not so simple. Never- 

turbule& 
as was first established by Kolmogorov [2 and 43, for stationary 
flow the assumption of Isotropy and of homogeneity results In 

motions of sufficiently small scale which are Independent of the structure 
of the established field (local hOmOReneitY and local IsotroDs of a statlon- 
ary turbulent flow). !l'hls property,-together with the hypothesis of trans- 
mlsslon of energy by a cascade of motions of different scales, enabled 
Kolmogorov to describe turbulent motions of appropriate scale factors. The 
above-mentloed analogy makes it possible to carry out the corresponding 
examination In the theory of steady-state plastic flow also. 

1. &8ti8tioti OhWaotm o? & flold of Illiorortrrrrrr. Pyslcal solids 

have an Inhomogeneous microstructure of supermolecular dimensions. For ex- 

ample, polycrystalllne materials consist of an aggregate of crystals of dlf- 

ierent shapes, sizes, orientations, boundary states, etc. Essentially, we 

have the same picture for mountain rocks and polymers. It Is natural that 

geometrically Identical samples made up from various pieces of a macro-homo- 

geneous material are not ldentlca 1 microscopically, and that the stresses 

produced In these samples under the action of one and the same load'ng will 

also be different. For a physical body, even the representation of the com- 

plete structure of the Inhomogeneity presents Insurmountable difficulties, 

not to mentlvn the mathematical difficulties of calculating the States of 

stress and strain In a body consisting of a large number of crystals. How- 

ever, the random character of the micro-lnhomogeneltles make It possible to 

apply statistical methods of macroscopic description. Tnus, statistical 

methods have been used In the paper of Llfshlts and Rozentsvelg [51 to give 

a dlscrlptlon of the elastic properties of polycrystals. 

Correspondingly, we will regard the totality of geometrically Identical 

samples taken from different parts of a macro-homogeneous and Isotropic 

material as a statistical ensemble. The average over the ensemble of the 

value of all kinds of characteristics (the mathematical expectation)* will 

be denoted by the symbol (), and hence the stress a,,(X) at a givenpoint 

x of the sample can be representd In the form . 

where al,(x) 1s the 

stresses represent a 

basic characteristic 

Crij (X) z <Gij (X)) foij’ (x) (1.1) 

pulsation of the stress or the mIcrostress**. The mlcro- 

random tensor field with mean values equal tozero. The 

of this field is the correletlon tensor of fourth order 

Rij,tl (XT X $ 1‘) = <Gil’ (X)OCZ’ (X f r)) (1.2) 

hhlch characterizes the connection of the stresses at different points. The 

scale factor of distances at which the values of the components of the cor- 

relation tensor become negligibly small compared with their values when F= 0 

* In view of the ergodlc hypothesis, the average over the ensemble can be 
replaced by either a spatial or temporal mean. 

** This terminology Is a little different from the conventional. 
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will be called the scale factor of the microstress correlation. 

Because of the symmetry of tensor ulJ' and definition (1.2), we have 

Rijkl = Rjikl -1 Rjilk 7 Rijltl (X, x + r) = Rklij (X, X - r) (1.3) 

The field of stresses satisfies the equilibrium equations 

aa,, 6 + r) a3,k (x + @ 
ax, ar, = 0 (1.4) 

Averaging (1.4) and subtracting the averaged equation from (1.4), we 

obtain 
a (c,k (x)) do,;, (x) 

ax, = 0, p= 
8X& 

0 (1.5) 

Multiplying the second equation (1.4) by c,,'(X) and averaging, we obtain 

an equation for the correlation tensor 

aRijka (X7 X f “1 -=o ara (1.Q 
We note that the first invariants of the correlation tensor R,JrL which 

are obtained by palrwlsa contraction of the Indices, have definite physical 

meaning. In fact, Isolating the spherical part of the stress tensor, we 

have 
Gij = - P&j + zij (1.7) 

Substituting this into (1.2) and contracting, we find 

R aa (X,X+r)=3P(x,x+r)fT(x,x+r), Ralpp (x,x+r) = 9P (x, ~+r)(l.S) 
where 

P (x, r) = (p’ (x) p’ (x + r):. T (x7 x + r) = (zap’ (4 zag’ (x -+- r)) 

The elastic energy per unit mass of a body with shear modulus u and 

bulk modulus K can be expressed as 

where the term W, In the first brackets is the sum of the elastic energy of 

change of shape and of volumetric dilatation for the averaged stresses, the 

term In the second brackets is the analogous quantity for the microstresses, 

and the third brackets contain terms expressing the interaction between the 

averaged stresses and the microstresses (In a plastic body W is the energy 

released as a result of complete unloading). From the expression for the 

mean energy the last terms drop out, so that the mean energy of the micro- 

stresses can be expressed In the form 

(1.10) 
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Thus, Raapp (x, x) andRiroGp(x, x) can be expressed in the form of linear 

combinations of the mean eiastlc energies of change of shape and of the 

volumetric deformation for the mlcrostresses. 

As has already been pointed out, for sufficiently small stresses, when 

all the deformations are reversible and the behavior of the bodies can be 

described by the classical linear equation of the theory of elasticity, the 

determination of the tensor of the mean stresses and of the correlation ten- 

sor can be carried out separately. This problem was treated by Volkov [6]. 
Any divergence from classical, linear elasticity leads to nonlinearity of 

the basic relations, and the system of equations for the mean stresses ceases 

to be closed. In particular, this occurs In plastic flow. 

2. Homoarnrour, lrotroplo miorortrrrrrr. The simplest possible assump- 

tion about the structure of the field of microstresses Is the assumption 

that It is homogeneous and Isotropic. This assumption Implies, In particular, 

the homogeneity and Isotropy of the correlation tensor (1.2). 

An Isotropic field of microstresses can be produced, for example, by sub- 

jecting a sphere to repeated, Identical extensions or compressions In dlffer- 

ent random directions (by rolling it between rigid plane surfaces). The 

general expression for the homogeneous, isotropic tenser that satisfies 

relations (1.3) has the form 

wherer = jr/, n ($) = r/ r;and A, B, C, D, E are Scalar functions Of f. 

On substituting (2.1) into equation (1.6) we obtain the three Independent 

equations 

2d + ~11’ - 2B + rB’ - 4C + 2rC’ = 0 

2B + rB’ + 2C $- r&Y’ = 0 

B -1 3C + rC’ + rD’ = 0 (2.2j 

In place of the functions A, B, C, D, E it is possible to mnsider 

linear combinations of them which have direct Physical meaning 

f2 (./‘) = ni?ljtkflRijkl = B + B, f3 (1’) = ?lifjlz~flKijkl = C t- D (2.3) 

f4 (r) = zitjzkt[Ki,‘kl == D, fj (1’) ;1 titj/~ll/lijf;l I= E 

(n = r / r, n3 = t? zzz z’ z 1, nt z nt z tz z-_ 0) 

Equations (2.2) assume the form 

‘l,rf,’ = - fl i- f2 i- 2f9 

‘lgf,’ == - f? - f3 + f4 t- f5 

I.f31 = - f- - 3f, $ ?I/, + f5 

(2.4) 
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Corresponding to the functions fl,..., &, it is possible to introduce 

Integral scale factors for the correlations in the form 

L, = 9” fibW 
* s o fit01 

(2.5) 

Thus, by virtue of the equilibrium equations, only two correlation moments 

remain independent. 

In the following investigation It will sometimes be convenient to Pass 

over to Fourier transforms. A random field of mlcrostresses can be resolved 

Into a Fourier-Stieltjes Integral 

Cij ’ (x) = 1 eikXdZij (k) (2.6) 

Substituting this expression into the definition of the correlation ten- 

sor (1.2), we obtain 

Rijkl (x-!-r, X)= \\ ei~kr+(k-p)xl (dZ,j (k) dzkl (k’)) (2.7) 

(Here the bar Indicates the complex conjugate quantity). 

For the homogeneity of the field (Independence of X ) It is necessary 

that 
(dZij (k) dZkl(k’)) = @)ijkl (k) 6 (k - k’) d3kd3k’ (23) 

I.e. that the spectral components of the fields of microstresses should be 

noncorrelative. Thus, for a homogeneous field we obtain 

lRijkl(r) = 1 @)ijkl (k) eikr d3k (2.9) 

The Fourier transform @,,r, of the correlation tensor can be defined as 

the inverse of (2.9) so that 

@ijkl (k) = & 1 Rijkl; (r) e-ikr d3r (2.10) 

It satisfies the symmetry relations 

@ijkl = @jikJ; = @ijlk 9 @ijkl(k) z (Z’klij: (- k) = Gklij (k) (2.11) 

Moreover, the form @ = @ijkl (k) XiYj XlYk is positive-definite.for arbi- 

trary complex vectors X, Y . Equations (1.6) can be written down In the 

form h-i@” - 0 t.?kll - (2.12) 

Then the general expression of the isotropic spectral tensor +l,r, can 

be written down in the form 

Q)ijkl = a(k) XijXkl + b (k)(XikXjl f XjkQ) (“ij = kw2i(kikj- k*6,j)) (2.13) 

where a(k) and b(k) are functions of the magnitude of the wave vector. 

The coefficients a(k) and b(k) can be expressed in terns of quantities 

having direct physical meaning. For this we make use of the spectral repre- 

sentation introduced in Section 1 of the functions p and T in the case 
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of a homogeneous, lsotroplc field of mlcrostresses. We have 

J' (4 = \ r~ 04 s 
eikrd3k = 41x i II (k) k2 ‘9 dk 

0 

T (r) = 42-c 10 (k) k2 *$ dk (2.14) 

The integration over the angle can be carried out separately by virtue of 

the Isotropy. 

On the ground of (I.'8), (2.9) and (2.13) we have 

@ aPaP (,+) = 3II (k) + 0 (k) = 2a (k) + 6b (k) 

@ aaPP (k) = %I (k) = 4~ (k) + 4b (k) (2.15) 

In agreement with (1.10) and (2.14), for a homogeneous, isotropic field 

pf mlcrostresses we obtain 

m4n ’ 16n 
(w’) =\ ClpE (k) fEk+\ 3Kpe (k) dk 

0 ;, 

E (k) = ‘l,k2 O(k), 1 e (k) = 3/8k211 (k; (2.16) 

SO that E(A) and e(k), to wlthin an accuracy of a constant dimensional 

multiplier, are the spectral densities of the energies of change of shape 

and of volumetric dilatation, respectively. 

Expressing s(1;) and b(k) directly In terms of E(k) and e(k) , we 
can rewrite (2.13) In the form 

3. LOOal ~rop@rtlrl oi #t@rdp plrltia flow. We will consider a body 

which Is in a macro-homogeneous, stress-deformation state and which 1s com- 

posed of microscopically Inhomogeneous material. We will assume that the 

material, in regard to its properties, approximates an Ideal plastic body 

and, further, that the individual elements of the supermolecular structure 

deform plastically In an almost Isotropic manner. In particular, In appll- 

cation to polycrystals this means that the crystallltes have a large number 

of slip planes. 

We will follow the course of development of plastic deformations In abody 

with Increase of loading. For definiteness we ~111 speak of polycrystals. 

At the beginning, when the loading 1s sufficiently small, the material deforms 

elastically. Then, on attaining a certain load, the most loaded and the 

favorably orientated crystallltes undergo plastic deformations. If the mlcrcl- 

inhomogeneltles in the material are distributed sufficiently uniformly, the 

mean distance l1 between the first plastically deformed crystallltes Can 

be very great, In particular, great ln comparison with the mean dimensions 
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of a crystallite. Thus, microstresses arise* with the scale factor l1 . 
With further Increase of the load, plastic deformations arise In new crystal- 

lltes which are then located closer to one another so that there arises a 

random distribution of microstresses with the scale factor I.< l1 . With 

subsequent Increase of the load, ln the same way there arise microstresses 

of scale factor Is< la< 11, and so forth, so that In steady plastic flow 

there Is an aggregateof microstresses with scale factors from i1 down to 

dimensions of the order of the mean grain size d and smaller. 

For bodies that are almost Ideally plastic, yielding occurs In a narrow 

Interval of load variations. That the scale factors of mlcrostresses can 

8-1~ exceed.thee;nrin size has been verlfled experimentally (see the 

very Important work by Pashkov and Bratukhlna L7J). Under the conaltions 

of an Inhomogeneous stress-deformation state, the upper scale factor of the 

microstresses can be determined by the scale factor of the lnhomogeneltles. 

For microstresses cf greatest scale factor I1 we encounter anlsotropy of 

the field of applied loads, so that microstresses of this scale factor can- 

not be considered as Isotropic. In passing to the subsequent, smaller scale 

factor 1, , this anlsotropy becomes smaller, since on the anlsotropy of the 

mlcrostresses of greatest scale factor, a new random element Is superimposed. 

In passing to microstresses of even smaller scale factors, further smooth- 

ening of the anisotropy arises, so that It can be assumed that mlcrostresses 

having a scale factor very much smaller thflt l1 are Isotropic. We empha- 

size that Isotropy of the microstresses of smallest scale factors Is assured 

by the presence of a large number of slip surfaces on the Individual crystal- 

lltes. The behavior of a material with a small number of slip systems will 

be significantly affected by the texture that Is formed during the defor- 

mation process. This texture leads to anlsotroplc mlcrostresses of small 

scale factor. 

The picture presented shows that In steady plastic flow the field ofmlcro- 

stresses with scale factor smaller than a certain 1 Is not only homogene- 

ous and Isotropic but also has a definite ButonomJr, I.e. an Independence of 

details of the structure of the basic state of stress and mlcrsstresses with 

larger scale factors. In other words, In steady plastic flow the fleld,of 

mlcrostresses possesses a local Isotropic and homogeneous property. Thus, 

for corresponding scale factors the structural tensors [2 to 4]* which are 

made up of the characteristics of the stress-deformation state for steady 

plastic flow, must be Isotropic and homogeneous. In particular, the'tensor 

Dijkl (X,X+ r)= ([oij (X) --Oij (X + r)] [Gkl (X) -okI tx + ‘)I) t3”) 

* By characteristic scale factor we mean, as usual, the order of magnitude 
of the distances over which the stresses change significantly. 



404 0.1. hmnbhtt ti V.4. Oorodtsov 

must be homogeneous and isotropic for F-Cl. Hence it follows that Formula 
(2.1) is also vslLd for the structural tensor D1, k1 . For an explanation of 
the connections between the coefficients A, B, C, D, E of the structural 
tensor D,,,, we note that, by virtue of the autonomy of the field of mlcro- 
stresses with the scale factor smaller than 1 , we can obtain these con- 
nections by considering the particular case when there Is complete isotropy 

and homogeneity throughout the whole field of stresses. In this case 

nijkl = 2 (aij (x)okl (X)> - 2 (oij (X)(Jkl (X + r)> = 

= 2 (%j alkl) - 2 (o,ij$kL) (3.2~ 

when the Indices correspond to point 1 with yosltlon vector X and to point 
2 with position vector X + r . By differentiating the last relation with 
respect to the coordinates of point 2, we obtain 

since on account of the equlllbrlum equatlondsdkI / i3xzk L= 0. By virtue of 

the homogeneity, the last relation can be written out in the form 

aDijkl 
ar,,== 

0 

(fr are the components of 0 ) . In exact analogy to the preceding, we find 

that the functions A, 8, . . . are connected by the same three differential 

relations (2.2), and consequently for a complete description of the tensor 

D I,,., It is sufficient to know two of these functions. 

We will now consider the process of transforming the energy in the course 

of steady plastic flow. The work of the external loads under conditions of 

developed plastic flow is completely converted Into the work of plastic de- 

formations, and this conversion takes place with the plastic deformation of 

the individual grains. Relying on the above-given pattern of steady plastic 

flow, the process of conversion of energy can be represented as the trans- 

mlsslon of energy from the macroscopic stresses to the mlcrostresses of 

greatest scale factor, and from these to the stresses of smaller scalefactors 

until there IS no dlsslpatlon of energy at the expense of plastic deformation 

of the grains, I.e. In the mlcrostresses with a scale factor lo smaller than 

the mean dimension of the grain. 

Similar to the inertial Interval Introduced by Kolmogorov in the theory 

of turbulence, It Is possible to make an assumption concerning the existence 

of intervals of scale factors of the mlcrostresses (elastic Interval) In 

which, on the ons hand, we have local isotropy and homogeneity and, on the 

other hand, characteristic scale factors are sufficiently great in comparison 

with the dimeneion l,, such that the mlcrostresses of the considered lnter- 

val of scale fnctora are not associated with an appreciable dissipation of 

energy. 
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The relations characterizing the plastic flow can be expressed In form of 

functions of kinematic quantities of the type like the "kinematic stress" 

Ur,/P f of the energy absorbed by plastic strains In unit mass, etc., from 

the dimension of which has been excluded the mass at the expense of division 

by the corresponding power of density. In particular, the coefficients A, 

B, C, D, E, which determine the kinematic structure tensor Dlltl, have under 

such conditions the dimensions L'T~. In the elastic Interval all the kine- 

matic characteristics of plastic flow can be determined by only two quanti- 

ties: the distance r and the energy c that can be absorbed in a unit 

mass In unit time. From dimensional considerations we have 

For the microstresses of all scale factors t‘ < 1 , the significant para- 
meter will also be that scale factor lo of the microstresses lr, which the 

dissipation of energy occurs In the plastic deformation. This leads to 

functions of the form A = &‘b’fafA (r/ I,,), where fA Is some dimensionless 

function, and slmllarly for the other functions. 

Substituting (3.5) Into (2.2), we obtain the following expressions for 

the coefficients y, X and 6 in terms of Q and B 

There Is also Interest In giving the spectral formulation of the adopted 

hypotheses and the results obtained. The first hypothesis consists in the 

fact that bhe fields of mlcrostresses with wave numbers k > 1-l are homo- 

geneous. Hence there Is a lack of correlation of the microstresses in this 

spectral band of wave numbers, I.e. Formula (2.8). The second hypothesis - 

the hypothesis of a cascade In the space of wave numbers - consists in the 

fact that, in the interval k > 1-l, the characteristics of the microstresses 

can be determined by the following parameters: k(L-‘1, c(LzT-‘)t and l,(L). 

Therefore, the kinematic densities of energy of change of shape and of volu- 

metric dilatation can, by virtue of dimensional considerations, be written 

in the form 
E = E' 3li-“Jfx (lil,), c = .4w’JfE (IJ,) (3.7) 

The third hypothesis means that In the Interval k > 1-l there exists a 

region of wave numbers k c 1;'. In this region kloa 1 , so that fE and 

ye become constants and relations (3.7) can be written down in the form 

E =; CEE',&-'l( e z c, El 3/,-Y, (3.8) 

The fourth hypothesis consists In the fact that In the Llterval k > 1-l 

we have Isotropy of the fields of microstresses. By virtue of these hypo- 

theses and Formula (3.8) for the spectral representation e,,,., of the cor- 

relation tensor, a relation of the type (2.17) results 
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Qjkl = Ev’~-13’3[(CE - C,) (xikxjl + XjkXil - xijxkl) + 6C,XijXkl] (3.9) 

The dimensionless constants CE and Ce are connected by the constants a 
and B Introduced earlier. 

Making use of the property of integral transform of the structural tensor 

[31 

Dijkl = 2 ’ <pijk[ (k) (1 - COS kr) d3r 
I 

(3.10) 
we obtain 

CEz (0.2p - 3a) 102, C, z (- 0.04p - 0.5a) IO’ (3.11) 

Thus, In the elastic Interval of scale factors and of wave numbers It 

turns outtobe easy to obtain the expression for the structural tensor of the 

field of mlcrostresses and of the spectral representation of the correlation 

tensor to wlthln an accuracy of two universal constants. 

The results obtained once more clearly demonstrate that the Idea of local 

isotropy and homogeneity, as well as the cascade hypothesis Introduced by 

Kolmogorov In the theory of turbulence, have avery general meaning for a wide 

class of nonlinear distributed (continuous) systems with dissipation. 

The authors sincerely thank A.S. Monln for valuable advice and R.L. Sal- 

ganlk for helpful discussion. 
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